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A b s t r a c t

Current guidelines encourage ambitious long term cholesterol lowering with
statins, in order to decrease cardiovascular disease events. However, by
regulating the biosynthesis of cholesterol we potentially change the form and
function of every cell membrane from the head to the toe. As research into cell
morphology and membrane function realises more dependencies upon
cholesterol rich lipid membranes, our clinical understanding of long term
inhibition of cholesterol biosynthesis is also changing. This review of non-
cardiovascular research concerning such membrane effects raises important
new issues concerning the clinical advantages and disadvantages of the long
term use, and broadening criteria, of cholesterol reductions.
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Introduction

The undoubted commercial success story in modern medicine has been
the creation of that infamous household dietary and medical obsession:
‘Cholesterol’. Over the past decade researchers have achieved new insight
into the regulatory relationship between cholesterol and the world of lipid
transport.

A persuasive association of statistics about cardiovascular outcomes
and levels of blood plasma lipids has created a sophisticated range of
therapeutic targets for cholesterol lowering therapies [1].

Statin drugs are extensively used and are very effective in lowering
serum low-density lipoprotein cholesterol [2]. They have been shown to
reduce the incidence of cardiovascular events especially in secondary
prevention, although there is reason to believe that most of their effects
are mediated in spite of their cholesterol lowering action [3].

De-novo cholesterol, the target of statin therapy, is found in all
membranes and lipid based bodies, where it is now known to be vital to
their proper structure and operation. Ikonen’s excellent review of
‘cholesterol trafficking’ [4] summarises the processes and mechanisms by
which cholesterol contributes to vesicle formation, migrations and
membrane functions throughout the cellular apparatus, and also illustrates
the importance of cholesterol homeostasis. The function and adequacy of
cholesterol in lipid membranes directly influences the production, secretion,
delivery and utilisation of every lipoprotein [5].
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By regulating the biosynthesis of cholesterol we
potentially change the form and function of every
membrane from the head to the toe. Statins created
a potent medical opportunity along with potential
for harm [6]. The past decade of research has
exposed the nature of cholesterol-rich membrane
rafts, raising fundamental clinical implications in
neurology, immunology and all areas where
lipoproteins are created, secreted and utilised. Our
appreciation of cholesterol now extends far beyond
the statistical link with cardio-vascular outcomes [7]. 

Cholesterol and insulin

Xia et al. inhibited a late step in the biosynthesis
of de-novo cholesterol in murine and human
pancreatic β cells [8] and published their findings
in 2008. They had previously shown that insulin
secretion was sensitive to the acute removal of
membrane cholesterol. They now demonstrate that
the depletion of membrane cholesterol impairs
calcium voltage channels, insulin secretory granule
creation, and mobilisation and membrane fusion.

This paper [8] clearly demonstrates that a direct
causal link exists between membrane cholesterol
depletion and the failure of insulin secretion. Their
work is in close accord with data from some statin
trials, which also connect cholesterol reduction with
increased risk of type 2 diabetes; indeed, statin use
has been shown to be associated with a rise of
fasting plasma glucose in patients with and without
diabetes [9]. The underlying mechanisms of the
potential adverse effects of statins on carbohydrate
homeostasis are complex [10] and might be related
to the lipophilicity of the statin [11]. Indeed,
retrospective analysis of the West of Scotland
Coronary Prevention Study (WOSCOPS) revealed
that 5 years of treatment with pravastatin reduced
diabetes incidence by 30% [12]. The authors
suggested that although lowering of trigliceride
levels could have influenced diabetes incidence,
other mechanisms such as anti-inflammatory action
might have been involved; however, in the
multivariate Cox model, baseline total cholesterol
did not predict the development of diabetes [12].
Furthermore, pravastatin did not decrease diabetes
incidence in the LIPID trial which included glucose-
intolerant patients [13]. On the other hand, in the
JUPITER trial (Justification for the Use of Statins in
Prevention: an Intervention Trial Evaluating
Rosuvastatin), which studied apparently healthy
persons without hyperlipidemia but with elevated
high-sensitivity C-reactive protein levels [14], the
risk of diabetes was increased by a factor of 1.25
[95% confidence interval (CI), 1.05 to 1.51] among
individuals receiving rosuvastatin 20 mg daily with
respect to placebo. Strikingly, among persons
assigned to rosuvastatin, the median low density
lipoprotein (LDL) cholesterol level at 12 months was

55 mg per deciliter [interquartile range, 44 to 72 
(1.1 to 1.9)]. 

It is intriguing that salutary lifestyle measures,
which might exert their beneficial action through
an anti-inflammatory mechanism without a strong
cholesterol-lowering effect, beyond reducing
cardiovascular events and total mortality, reduce
also the risk of diabetes and other chronic
degenerative diseases. This fact may represent 
a ‘justification’ not to use a drug in low-risk primary
prevention populations: lowering cholesterol at the
expense of increasing diabetes might be counter-
productive over the long-term.

Cholesterol-rich membrane rafts

The role of cholesterol in cellular function
became evident with the advent of the lipid raft
hypothesis [15]. The original lipid raft hypothesis
proposed the existence of assemblies of specific
lipids, that compartimentalise the plasma
membrane into functionally distinct areas [15, 16]
involved in protein sorting events in polarized cells.
It has now been clarified that lipid rafts are
cholesterol- and sphingolipid-enriched membrane
microdomains that function as platforms that
concentrate and segregate proteins within the
plane of the bilayer [17]; they are now thought to
regulate membrane trafficking in both the
exocytotic and endocytotic pathways, cell migration,
and a variety of cell signalling cascades [18]. 

Lipid rafts consist of both protein and lipid
components existing in continuity with non-raft
regions of membrane. Lipid-lipid interactions seem
to be of fundamental importance to the formation
of lipid rafts, with cholesterol playing a special role
as the ‘glue’ that holds these domains together [19].

The physical consequence of cholesterol
depletion in membranes is dramatically illustrated
by the experimental modelling work of de Meyer
et al. [20]. They were able to demonstrate the
manner in which cholesterol is uniquely able to
influence the structure, thickness, permeability,
deformation and other behaviours of membranes.
A state of ordered stability is attained in cholesterol-
rich lipid rafts when the level reaches 20-30%
molecular cholesterol.

On the other hand, disorder, weakness and
permeability might be created in cholesterol
depleted membranes areas: cholesterol depletion
inhibiting regulated exocytosis is a key discussion
point in the review by Salaün et al. [21]. Molecule
for molecule, cholesterol can make up nearly half
of the cell membrane in lipid raft areas, cholesterol
typically makes up 20% of total lipid molecules in
the membrane [22]. Just for example, a relatively
small depletion (< 10%) in synaptosomal membrane
cholesterol has been shown to be enough to inhibit
the release of a neurotransmitter [23].
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Synaptogenesis and neural cholesterol

Nowhere is the impact of cholesterol depletion
more keenly studied than in the neurologic arena.

The work of Pfrieger et al. described the functional
role of cholesterol in memory through synapto-
genesis [24]. Mauch et al. [25] reported evidence that
cholesterol is vital to the formation and correct
operation of neurons to such an extent that neurons
require additional sources of cholesterol to be
secreted by glial cells. A recent mini-review by Jang
et al. describes the synaptic vesicle secretion in
neurons and its dependence upon cholesterol-rich
membrane areas of the synaptic membrane [26].
Furthermore, working on rat brain synaptosomes,
Waseem [23] demonstrated that a mere 9.3%
decrease in the cholesterol level of the synaptosomal
plasma membrane could inhibit exocytosis. These
data might be particularly worrisome for lovastatin
and simvastatin which are known to cross the blood
brain barrier [27]. 

In fact, the proposed use of statins as a thera-
peutic agent in Alzheimer’s disease (AD) [28]
counters Pfrieger’s evidence [24]. Indeed, a reduc-
tion in cholesterol synthesis leads to depletion of
cholesterol in the lipid rafts – i.e. the de-novo
cholesterol is required in the neurons for synaptic
function and also in the neuronal membrane fusion
pores [29].

Cognitive problems are the second most frequent
type of adverse events, after muscle complaints, to
be reported with statin therapy [30] and this has
speculatively been attributed to mitochondrial
effects. The central nervous sytem (CNS) cholesterol
is synthesised in situ and CNS neurons only produce
enough cholesterol to survive. The substantial
amounts needed for synaptogenesis have to be
supplemented by the glia cells. Having previously
shown that in rat retinal ganglion cells without glia
cells fewer and less efficient synapses could form,
Göritz et al. [31] indicate that limiting cholesterol
availability from glia directly affects the ability of
CNS neurons to create synapses. They note that
synthesis, uptake and transport of cholesterol
directly impacts the development and plasticity of
the synaptic circuitry. We note their very strong
implication that local de-novo cholesterol synthesis
in situ is essential in the creation and maintenance
of memory.

There should be further consideration of
cholesterol depletion on synaptogenesis, behaviours
and memory loss for patients undergoing long-term
statin therapy. This is particularly important with
lipophilic statins which easily cross the blood brain
barrier [32]. 

The effects of statins on cognitive function and
the therapeutic potential of statins in Alzheimer’s
disease are not clearly understood [28]. Two
randomised trials of statins versus placebo in

relatively younger healthier samples (lovastatin in
one, simvastatin in other) showed significant
worsening of cognitive indices relative to placebo
[33, 34]. On the other hand, two trials in Alzheimer
samples (with atorvastatin and simvastatin
respectively) suggested possible trends to cognitive
benefit, although these appeared to dissipate at 
1 year [35, 36]. A recent Cochrane review concluded
that there is good evidence from randomised trials
that statins given in late life to individuals at risk
of vascular disease have no effect in preventing
Alzheimer´s disease or dementia [37]. However,
case reports and case series from clinical practice
in the real world reported cognitive loss on statins
that resolved with discontinuation and recurred
with rechallenge [30].

Evidence from observational data and prestatin
hypolipidemic randomised trials showed higher
hemorrhagic stroke risk with low cholesterol [30].
In fact, in the Stroke Prevention with Aggressive
Reductions in Cholesterol Levels (SPARCL) trial as
compared with placebo, the use of high-dose
atorvastatin was associated with a 66% increase
in the relative risk of hemorrhagic stroke among
the patients receiving the statin drug [38]. In
addition to treatment with atorvastatin, an
exploratory analysis of the SPARCL trial found that
having hemorrhagic stroke as an entry event, male
sex, and advancing age at baseline accounted for
the great majority of the increased risk of
hemorrhagic strokes [39]. However, a sensitivity
analysis excluding all patients with a hemorrhagic
stroke as an entry event in the SPARCL trial found
that statin treatment was still associated with an
increased risk of hemorrhagic stroke [40].
Furthermore, in a subgroup of patients with 
a history of cerebrovascular disease enrolled in the
Heart Protection Study [41] which did not include
patients with hemorrhagic stroke, a similar
increased risk of hemorrhagic stroke during follow-
up was demonstrated [40].

Cholesterol in myelination and multiple
sclerosis

The process in which axons are protected by the
myelin secretions of the oligodendrocyte requires
a specialised cholesterol-rich membrane [42].
Klopfleisch et al. [43] describe experimental in vivo
evidence that new myelin (re-myelination) secretion
by oligodendrocytes is impaired by statins.

Whilst they attribute much of this failure to
signalling interference, they also prevented
detrimental outcomes in vitro by re-incubating
oligodendrocytes with cholesterol. How long are
oligodendrocytes able to repair and maintain myelin
in an environment where cholesterol is depleted?

It has been argued that statins can prevent de-
myelination [44] through a pleiotropic anti-
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inflammatory effect and this has led to research on
its use as a multiple sclerosis therapy. 

This would appear to contradict Klopfleisch’s
findings [43], until you consider that initially there
may be multiple conflicting effects over different
time scales: Possibly the initial inhibiting of an auto-
immune action associated with a de-myelination
and subsequent inhibition of oligodendrocyte
repairs by cholesterol depletion.

Research is needed to establish whether the
apparent initial slowing of de-myelination in statin
therapy would be followed by a catastrophic failure
of the re-myelination work of oligodendrocyte
exocytosis [45] as cholesterol synthesis fails.
Furthermore, consideration should be given to the
structural state of membranes involved in any auto-
immune process where a complex interplay of
essential membrane lipids, mediated by cholesterol,
affects the immune response [46].

Neuro-muscular junctions and cholesterol

Symptoms associated with the malfunctioning
of neuromuscular junction have frequently been
reported by patients undergoing cholesterol lowering
therapies [30]. A LDL receptor, called Lrp-4,
is secreted by the neuro-muscular junction and it
forms a complex with agrin which binds the muscle
fibre receptor MuSK [47, 48]. The exocytoses of Lrp4
and agrin are active transport events, mediated
through a cholesterol-rich lipid membrane. The
secretion of the trans-membrane MuSK protein also
requires a cholesterol-rich membrane raft. 

There is extensive evidence to suggest that the
depletion of cholesterol in both the synapse and post-
synapse components of the neuro-muscular
membranes areas would cause the failure of MuSK,
Lrp4 and agrin exocytosis [49]. Such a failure would
produce a myasthenic syndrome [50] with symptoms
similar to those defining myasthenia gravis [51-55]
and amyotrophic lateral sclerosis [56, 57].

Cholesterol and behaviours

The neurological effects of cholesterol depletion
can produce a wide range of mental conditions
reported to be associated with serum cholesterol
depletion. Depression, violent behaviour, homicidal
behaviour and suicide are all known associates of
cholesterol depletion [58, 59]. 

In a recent study, cholesterol content was
measured in cortical and subcortical tissue of brains
from 41 male suicide completers and 21 male
controls. Violent suicides were found to have lower
gray matter cholesterol content overall compared
with nonviolent suicides and controls [60].

Randomised trials with statins have not shown
a definite association between cholesterol-lowering
treatment and non-illness mortality from suicides,

accidents, and violence [61, 62]. However, statin
trials are specifically designed to test drug efficacy,
often with run-in phases, and investigators usually
conduct the studies in groups of patients who have
few comorbidities and are not using many
concomitant medications, and when side effects
are measured, their seriousness and severity are
not graded. Indeed, in clinical practice it has been
suggested that severe anger and irritability may
occour in some statin users [63].

Neural systems have significant vulnerability to
cholesterol depletion. First is the reduction in the
synaptic exocytosis and endocytosis of essential
signalling lipoproteins; then comes the vulnerability
due to the high dependency of myelination on de-
novo cholesterol biosynthesis.

Membrane cholesterol and immunology

There are many immunologic functions that are
dependent upon exocytosis, mediated by
cholesterol-rich lipid rafts. There is an accumulation
of exosome-sourced cholesterol caused by the
infiltration of activated T lymphocytes into an
atherosclerotic plaque as part of the immune
response [7, 64].

In fact, statins affect multiple cell populations
relevant to the immune response [65]. Although
statins has been rarely associated with autoimmune
disorders [30], the Trial of Atorvastatin in
Rheumatoid Arthritis (TARA) study showed that
atorvastatin (40 mg daily for 6 months) mediated
modest but clinically apparent antiinflammatory
effects in patients with rheumatoid arthritis [66].
However, the observed clinical efficacy was marginal
in relation to both conventional disease-modifying
antirheumatic drugs and novel biological
compounds. Furthermore, statins seem to act in 
a disease-specific manner and are not effective in
each immune disorder [65]. 

Peterson et al. [67] describe how the exocytosis
of apolipoprotein B, very-low density lipoprotein
(VLDL) and LDL secretions in skin protects against
Staphylococcus aureus infection by interfering with
the quorum sensing receptors which are needed to
up-regulate the genes required for invasive
infection. In this context we note a previous letter
of Goldstein et al. [68] highlighting the possibility
of a link between invasive methicillin resistant
(MRSA) infection and statin therapy, when
commenting on recent epidemiological trends.

Although no prospective randomised human trials
testing the effects of statins in sepsis exist, it has
been suggested that statins, blocking the
inflammatory response associated with sepsis, might
be of potential benefit [69]. However, mounting
evidence suggests that the initial and intense
systemic inflammatory response in patients,
responsible for organ dysfunction and hypoperfusion
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is accompanied by an anti-inflammatory process,
acting in a negative-feedback manner. These
inhibitory mechanisms could become harmful since
nearly all immune functions are compromised, and
therefore they may account for the majority of deaths
after sepsis [70]. Moreover, it has been shown that
hypocholesterolemia in critical illness and
multisystem organ failure correlates with decreased
patient survival rates [71]; lipoproteins have been
found to bind with and neutralize bacterial
endotoxins [72]. Indeed, favorable results of lipid-
infusion therapy have been noted in some animal
studies [73, 74].

The immunomodulatory action of statins might
also be seen as a double-edged sword because it
may also hinder the host anti-tumor immune
response, therefore increasing cancer risk [75].

A recent systematic review [76] found that
statins do not have short-term effects on cancer
risk. However, the strength of evidence was weak,
and these data was mostly derived from
randomised trials of short duration and related to
highly select people; thus the extrapolation to
patients seen in clinical practice should not be
considered straightforward. In particular, the elderly,
who have depressed immune functions and are
more likely than younger subjects to harbor
microscopic foci of cancer cells, might be
particularly subject to adverse outcomes from the
immunosuppressive effects of statin therapy [77]. 

The results of the Simvastatin and Ezetimibe in
Aortic Stenosis (SEAS) trial have been recently
published [78]: during a follow-up of 52.2 months,
simvastatin and ezetimibe, as compared to placebo,
did not reduce the composite outcome of combined
aortic-valve events and ischemic events in patients
with aortic stenosis. However, of more concern, an
excess of incident cancers was observed in the
simvastatin-ezetimibe group, with 105 in that group
as compared with 70 in the placebo group 
(p = 0.01). Also, deaths from cancer were more
frequent in the active-treatment group (39 deaths,
vs. 23 in the placebo group), achieving a borderline
statistical significance (p = 0.05). Of note, the
average age in the SEAS trial was 68 years. 

In this setting, beyond the immunomodulatory
effect of simvastatin which might promote growth
increase of occult cancers, it cannot be dismissed
the action of ezetimibe which inhibits the
absorption of phytosterols and other phytonutrients
that are linked to protection against cancer [79]. 

Cholesterol and bone fractures

Studies associating statin therapies with
reductions in bone loss conflict with those reporting
an association with bone fractures [80]. If statin
therapies are down regulating lipid trafficking, bone
remodelling might be slowed. Osteoclasts, when

depleted of membrane cholesterol, will be restricted
in their ability to absorb old bone matrix, thereby
appearing to protect against bone loss [81]. Likewise,
osteoblasts, when depleted of membrane chole-
sterol, will be restricted in their ability to secrete new
mineral matrix into fractures. Interestingly, higher
total serum cholesterol levels have been shown to
protect against fractures in post-menopausal women
at risk of osteoporosis [82].

Conclusions

We are now realizing that the intricate
connection between endocytosis and exocytosis,
cholesterol-rich lipid membranes and the trafficking
of lipoproteins within and between cells is the key
to understanding the benefits and detriments of
cholesterol lowering therapies. Current guidelines
encourage aggressive and long-term cholesterol
lowering with statins, in order to decrease
cardiovascular disease events [1]. The main benefits
of this therapy are thought to be due to plaque
stabilization in the arterial wall [83]. However,
cholesterol lowering alters cell membranes from
head to toe, the implication of which may be good,
bad or neither. Most importantly, more research is
needed in this field, as wider segments of the
population are exposed to aggressive cholesterol
lowering. This research should answer the question:
Is it possible, with aggressive cholesterol lowering,
to achieve long-term plaque stability and
simultaneously maintain cellular membrane
integrity and function?

It has recently been shown that high LDL
cholesterol is not a major cause of death at the
population level [84]. Changing our current practice
pattern could take many years, but we may one day
prescribe cholesterol-raising medications to certain
patients [85]. 
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